NORMAL FAMILIES CONCERNING SHARED VALUES

BY

HUAIHUI CHEN

Department of Mathematics, Nanjing Normal University Nanjing 210097, P. R. China

AND

XINHOU HUA*

Department of Mathematics, Nanjing University Nanjing 210093, P. R. China mahua@netra, nju. edu. cn

ABSTRACT

Let $\mathfrak F$ be a family of holomorphic functions in the unit disk D. Suppose that there exists a nonzero and finite value a such that for each function $f \in \mathfrak{F}, f, f'$ and f'' share the value a IM in D. Then the family \mathfrak{F} is normal in D. An example shows that a cannot be zero.

1. Introduction and main result

According to Bloch's principle, many normality criteria can be proved by starting from Picard type theorems (see $[9]$). Another approach to normality criteria is to use conditions known from theorems on sharing values. A first attempt at this was made by Schwick [10].

Let f and g be two meromorphic functions in the domain U, $a \in \mathbb{C}$. If $f - a$ and $q - a$ have the same zeros in U, then we say that f and g share the value a IM (ignoring multiplicity) in U (cf. [11]).

^{*} Supported in part by NSFC and NSF of Jiangsu Province. Received January 22, 1998

THEOREM A ([10]): *Let 3 be a family of meromorphic functions in the unit disk D* and a_1 , a_2 , a_3 be distinct complex numbers. If f and f' share a_1 , a_2 , a_3 IM *in D for every* $f \in \mathfrak{F}$, then \mathfrak{F} is normal in D.

In this paper, we shall prove

THEOREM: Let $\mathfrak F$ be a family of holomorphic functions in the unit disk D . *Suppose that* there *exists a nonzero and finite value a such* that *for each* function $f \in \mathfrak{F}$, f, f' and f'' share the value a IM in D. Then the family \mathfrak{F} *is normal in D.*

Remark *1:* The following example shows that the value a cannot be zero.

Example: Let $\mathfrak{F} = \{f_n(z) = e^{nz} : n = 1, 2, ...\}$. Then the spherical derivative $f_{n}^{#}(0) = n/2 \rightarrow \infty$. Thus \mathfrak{F} is not normal in the unit disk D by Marty's criterion. However, it is clear that f_n, f'_n and f''_n share 0, since none of these functions vanishes.

2. Preliminaries

We shall use standard notations in Nevanlinna theory (cf. [2]). Define

(1)
$$
\Psi(z) := \psi(f(z)) = \frac{f'(z) + f''(z)}{f(z) - a} - \frac{2f''(z)}{f'(z) - a}.
$$

Then $\psi(f(z)) \neq 0$ implies that $f \neq f'$.

For convenience, we set

$$
LD(r, f: c_1, c_2, c_3, c_4) = c_1 m \left(r, \frac{f'}{f - a}\right) + c_2 m \left(r, \frac{f''}{f'}\right) + c_3 m \left(r, \frac{f''}{f' - a}\right) + c_4 m \left(r, \frac{f''}{f - a}\right).
$$

We denote by M a positive number depending on a only, which may have different values at different occurrences.

LEMMA 1: Let f be holomorphic in the unit disk D and $a \in \mathbb{C} \setminus \{0\}$. Suppose that f, f' and f'' share a IM in D. Then $f(z_0) = a$ implies $\Psi(z_0) = 0$.

Proof: By the assumptions we may suppose that, near z_0 ,

$$
f(z) = a + a(z - z_0) + \frac{a}{2}(z - z_0)^2 + b(z - z_0)^3 + O((z - z_0)^4),
$$

where b is a constant relating z_0 . Then we have

$$
f'(z) = a + a(z - z_0) + 3b(z - z_0)^2 + O((z - z_0)^3),
$$

$$
f''(z) = a + 6b(z - z_0) + O((z - z_0)^2).
$$

Hence

$$
\frac{f'+f''}{f-a} = \frac{2}{z-z_0} + \frac{6b}{a} + O(z-z_0),
$$

$$
\frac{f''}{f'-a} = \frac{1}{z-z_0} + \frac{3b}{a} + O(z-z_0).
$$

П

Thus $\Psi(z_0) = 0$. The proof of the lemma is complete.

LEMMA 2: Let f be holomorphic in the unit disk D . Suppose that f , f' and f'' share a nonzero and finite value a IM in D. If $f(0) \neq a$ and $f''(0) \neq 0$, then

$$
T(r, f) \leq 2\overline{N}\left(r, \frac{1}{f-a}\right) + LD(f:1, 2, 1, 0) + \log \frac{|(f(0) - a)(f'(0) - a)|}{|f''(0)|} + M.
$$

Proof: From the assumptions we see that $f'(0) \neq a$. By the first and the second fundamental theorems,

$$
m\left(r, \frac{1}{f-a}\right) + m\left(r, \frac{1}{f'-a}\right) \le m\left(r, \frac{f'}{f-a}\right) + m\left(r, \frac{1}{f'}\right) + m\left(r, \frac{1}{f'-a}\right)
$$

$$
\le m\left(r, \frac{1}{f''}\right) + LD(f:1,1,1,0) + M
$$

$$
\le T(r, f'') + LD(f:1,1,1,0) + \log \frac{1}{|f''(0)|} + M
$$

$$
\le T(r, f') + LD(f:1,2,1,0) + \log \frac{1}{|f''(0)|} + M.
$$

Thus

$$
T(r, f) \leq N\left(r, \frac{1}{f-a}\right) + N\left(r, \frac{1}{f'-a}\right) + LD(f: 1, 2, 1, 0) + \log \frac{|(f(0)-a)(f'(0)-a)|}{|f''(0)|} + M.
$$

Since *f*, *f'* and *f''* share the value *a*, we know that $f - a$ and $f' - a$ have only simple zeros and

$$
N\left(r,\frac{1}{f-a}\right)=N\left(r,\frac{1}{f'-a}\right).
$$

The conclusion follows. \blacksquare

LEMMA 3: *Let f be holomorphic in the unit disk D. Suppose that f, f' and f" share a nonzero and finite value a IM in D. If* $f(0) \neq a$, $f''(0) \neq 0$ and $\Psi(0) \neq 0$, *then*

$$
T(r, f) \leq LD(f: 3, 2, 3, 2) + \log \frac{|(f(0) - a)(f'(0) - a)|}{|f''(0)\Psi(0)^2|} + M.
$$

Proof: From Lemma 1 we see that $\Psi(z)$ is holomorphic in D, and

$$
N\left(r, \frac{1}{f-a}\right) \le N\left(r, \frac{1}{\Psi}\right)
$$

$$
\le T(r, \Psi) + \log \frac{1}{|\Psi(0)|}
$$

$$
\le LD(f: 1, 0, 1, 1) + \log \frac{1}{|\Psi(0)|} + M.
$$

This and Lemma 2 yield the conclusion. \blacksquare

Remark 2: If f is a nonconstant entire function and f, f' and f'' share a finite and nonzero value a IM in the plane, then the above lemma implies that $f = f'$. This conclusion was already obtained by Jank-Mues-Volkmann [4]. Our proof is very simple.

The following result is the well-known Zalcman's principle.

LEMMA 4 ($[12]$): Let \mathfrak{F} be a family of meromorphic functions on the unit disk Δ . Then $\mathfrak F$ is not normal at $z = 0$ if and only if there exists a sequence $f_n \subset \mathfrak F$, a *sequence* $z_n \to 0$ and a positive sequence $\rho_n \to 0$ such that $g_n(\zeta) = f_n(z_n + \rho_n \zeta)$ *converges locally and uniformly to a non-constant entire function* $q(\zeta)$ *.*

LEMMA 5 (see Hiong [3]): If $f(z)$ is meromorphic in a disk $|z| < R$ such that $f(0) \neq 0, \infty$, then, for $0 < r < \rho < R$,

$$
m\left(r, \frac{f^{(k)}}{f}\right) \le C_k \Big\{ 1 + \log^+ \log^+ \frac{1}{|f(0)|} + \log^+ \frac{1}{r} + \log^+ \frac{1}{\rho - r} + \log^+ \rho + \log^+ T(\rho, f) \Big\},\,
$$

where C_k is a constant depending only on k .

LEMMA 6 (Bureau [1]): Let b_1 , b_2 and b_3 be positive numbers and $T(r)$ a non*negative, increasing and continuous function on an interval* $[r_0, R)$, $R < \infty$. If

$$
T(r) \leq b_1 + b_2 \log^+ \frac{1}{\rho - r} + b_3 \log^+ T(\rho)
$$

for any $r_0 < r < \rho < R$, then

$$
T(r) \leq B_1 + B_2 \log^+ \frac{1}{R-r}
$$

for $r_0 \le r < R$, where B_1 and B_2 depend only on b_i $(i = 1, 2, 3)$.

3. Proof of the theorem

Suppose on the contrary that the family \mathfrak{F} is not normal in D. Without loss of generality, we may suppose that $\mathfrak F$ is not normal at 0. By Zalcman's principle, there exist a sequence f_n in \mathfrak{F} , a sequence $z_n \to 0$ and a positive sequence $\rho_n \to 0$ such that

(2)
$$
g_n(\zeta) = f_n(z_n + \rho_n \zeta)
$$

tends to a nonconstant entire function $g(\zeta)$ uniformly on compact subsets of \mathbb{C} . Thus, for any positive integer k ,

(3)
$$
g_n^{(k)}(\zeta) = \rho_n^k f_n^{(k)}(z_n + \rho_n \zeta) \to g^{(k)}(\zeta).
$$

If g is a polynomial, then there exists a point w_0 such that $g(w_0) = a$. By Hurwitz' theorem, there is a sequence $\zeta_n \to w_0$ such that

$$
g_n(\zeta_n)=f_n(z_n+\rho_n\zeta_n)=a\quad\text{for }n=1,2,\ldots.
$$

Thus

(4)
$$
f'_{n}(z_{n} + \rho_{n}\zeta_{n}) = f''_{n}(z_{n} + \rho_{n}\zeta_{n}) = a
$$

for $n = 1, 2, \ldots$, since f_n, f'_n and f''_n share a. By (3), we have

$$
g'_n(\zeta_n) = \rho_n f'_n(z_n + \rho_n \zeta_n) \to g'(w_0)
$$

and

$$
g''_n(\zeta_n)=\rho_n^2f''_n(z_n+\rho_n\zeta_n)\to g''(w_0).
$$

This and (4) imply that

$$
g'(w_0) = g''(w_0) = 0.
$$

Thus $g(\zeta)$ is not a polynomial of degree less than 3.

Now there are two cases to be discussed.

CASE 1: There is a subsequence $\{f_{n_j}\}\subset \{f_n\}$ such that $\psi(f_{n_j})\equiv 0$. Then by (1),

$$
\frac{\rho_{n_j}^2 f'_{n_j}(z_{n_j} + \rho_{n_j} \zeta) + \rho_{n_j}^2 f''_{n_j}(z_{n_j} + \rho_{n_j} \zeta)}{f_{n_j}(z_{n_j} + \rho_{n_j} \zeta) - a} = \frac{2\rho_{n_j}^3 f''_{n_j}(z_{n_j} + \rho_{n_j} \zeta)}{\rho_{n_j} f'_{n_j}(z_{n_j} + \rho_{n_j} \zeta) - \rho_{n_j} a}.
$$

Thus by (2) ,

$$
\frac{\rho_{n_j} g'_{n_j}(\zeta) + g''_{n_j}(\zeta)}{g_{n_j}(\zeta) - a} = \frac{2\rho_{n_j} g''_{n_j}(\zeta)}{g'_{n_j}(\zeta) - a\rho_{n_j}}.
$$

Letting $j \to \infty$, by (3), we obtain $g''(\zeta) \equiv 0$, which is a contradiction.

CASE 2: There are only finitely many f_n such that $\psi(f_n) \equiv 0$. We may suppose that $\psi(f_n) \neq 0$ for all n. Take a point ζ_0 such that

(5)
$$
g(\zeta_0) \neq a, 0; \quad g'(\zeta_0) \neq 0; \quad g''(\zeta_0) \neq 0.
$$

The same reason as above gives

$$
\rho_n^2 \psi(f_n(z_n + \rho_n \zeta_0)) = \frac{\rho_{n_j} g'_{n_j}(\zeta_0) + g''_{n_j}(\zeta_0)}{g_{n_j}(\zeta_0) - a} - \frac{2\rho_{n_j} g''_{n_j}(\zeta_0)}{g'_{n_j}(\zeta_0) - a\rho_{n_j}}
$$
\n
$$
\to \frac{g''(\zeta_0)}{g(\zeta_0) - a}.
$$
\n(6)

On the other hand,

$$
\frac{1}{\rho_n}\frac{(f_n(z_n+\rho_n\zeta_0)-a)(f'_n(z_n+\rho_n\zeta_0)-a)}{f''_n(z_n+\rho_n\zeta_0)}\to \frac{(g(\zeta_0)-a)g'(\zeta_0)}{g''(\zeta_0)}.
$$

These two facts imply that

(7)
$$
\log \frac{|(f_n(z_n + \rho_n \zeta_0) - a)(f'_n(z_n + \rho_n \zeta_0) - a)|}{|f''_n(z_n + \rho_n \zeta_0)\psi(f_n(z_n + \rho_n \zeta_0))^2|} \to -\infty \text{ as } n \to \infty.
$$

For $n = 1, 2, \ldots$, put

$$
h_n(z) = f_n(z_n + \rho_n \zeta_0 + z).
$$

Let n be sufficiently large. Then h_n is defined and holomorphic on the disk $0 < |z| < 1/2$, since $z_n + \rho_n \zeta_0 \to 0$. By (5) and (6),

(8)
$$
h_n(0) = g_n(\zeta_0) \to g(\zeta_0) \neq a, 0,
$$

(9)
$$
h'_n(0) = \frac{1}{\rho_n} g'_n(\zeta_0) \to \infty,
$$

(10)
$$
h''_n(0) = \frac{1}{\rho_n^2} g''_n(\zeta_0) \to \infty,
$$

(11)
$$
\psi(h_n(0)) = \psi(f_n(z_n + \rho_n \zeta_0)) \to \infty.
$$

Applying Lemma 3 to $h_n(z)$ and using (7) we get

(12)
$$
T(r, h_n) \leq LD(r, h_n: 3, 2, 3, 2)
$$

for sufficiently large n. For $1/4 < r < \rho_1 < 1/2$, let $\rho' = (r + \rho)/2$. By Lemma 5, we have

$$
LD(r, h_n: 3, 2, 3, 2) \le M \Big\{ 1 + \log^+ \log^+ \frac{1}{|h_n(0) - a|} + \log^+ \log^+ \frac{1}{|h'_n(0)|} + \log^+ \log^+ \frac{1}{|h'_n(0) - a|} + \log^+ \frac{1}{\rho' - r} + \log^+ T(\rho', h_n) + \log^+ T(\rho', h'_n) \Big\}.
$$
\n(13)

Note that

(14)
\n
$$
\log^+ T(\rho', h'_n) \leq \log^+ T(\rho', h_n) + \log^+ m(\rho', \frac{h'_n}{h_n})
$$
\n
$$
\leq \log^+ T(\rho, h_n) + m(\rho', \frac{h'_n}{h_n}).
$$

Applying Lemma 5 to $0 < \rho' < \rho$, we have

(15)
$$
m(\rho', \frac{h'_n}{h_n}) \leq M \left\{ 1 + \log^+ \log^+ \frac{1}{|h_n(0)|} + \log^+ \frac{1}{\rho - \rho'} + \log^+ T(\rho, h_n) \right\}.
$$

It follows from $(8)-(15)$ that

$$
T(r, h_n) \le b_1 + b_2 \log^+ \frac{1}{\rho - r} + b_3 \log^+ T(\rho, h_n),
$$

where b_1 , b_2 and b_3 are constants independent of n. By Lemma 6, we obtain

$$
T(\frac{1}{4},h_n)\leq A,
$$

where A is a constant independent of n. Thus $f_n(z)$ are bounded for sufficiently large n and $|z| < 1/8$. However, from

$$
\rho_n^2 f''_n(z_n + \rho_n \zeta_0) = g''_n(\zeta_0) \to g''(\zeta_0) \neq 0
$$

we see that $f_n(z)$ cannot be bounded in $|z| < 1/8$. Therefore we get a contradiction. The proof is complete. \Box

ACKNOWLEDGEMENT: We wish to thank the referee for valuable suggestions and for giving us some unpublished references, such as [5]-[8].

References

- [1] F. Bureau, *Mémoire sur les fonctions uniformes à point singulier essentiel isolé*, Mémoire de la Société de Royale Science Liège 17 (1932).
- [2] W. K. Hayman, *Meromorphic Functions,* Oxford University Press, 1964.
- [3] K. Hiong, *Sur les fonctions holomorphes dont les dérivées admettant une valeur exceptionnelle, Annales Scientifiques de l'École Normale Supérieure (3) 72 (1955),* 165-197.
- [4] G. Jank, E. Mues and L. Volkmann, *Meromorphe Fhnktionen, die mit ihrer ersten und zweiten Ableitung einen endliehen Werte teilen,* Complex Variables 6 (1986), 51-71.
- [5] X. C. Pang, *Shared values and normal families,* Preprint.
- [6] X. C. Pang, *Normality and sharing values*, Preprint.
- [7] X. C. Pang and L. Zalcman, *Normal families and shared values,* The Bulletin of the London Mathematical Society, to appear.
- [8] X. C. Pang and L. Zalcman, *Normality and shared values*, Arkiv för Matematik, to appear.
- [9] J. L. Schiff, *Normal families,* Springer-Verlag, Berlin, 1995.
- [10] W. Schwick, *Sharing values and normality,* Archiv der Mathematik 59 (1992), 50-54.
- [11] H. X. Yi and C. C. Yang, *Uniqueness Theory of Meromorphic Functions (Chinese)*, Science Press, Beijing, 1995.
- [12] L. Zalcman, *A heuristic principle in complex function theory,* The American Mathematical Monthly 82 (1975), 813-817.